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1. Introduction 

As one who fairly often sees contingency tables 
in connection with analyzing social survey data, 
I recently became interested in what computa- 
tions to include in the local statistical 
package to accompany the cross tabulation out- 
put. This paper reports on the approach that 
was developed to evaluate measures of associa- 
tion for two -way tables with ordered variates 
in both directions. Generally speaking, under 
certain conditions one measure will be best, 
while under other conditions another one will 
be. This is not an unexpected conclusion, but 
what may be new here is the emphasis on a some- 
what more empirical method than any I have seen 
heretofore, in describing these conditions. 

For the case of continuous variates there are 
results already available on the relative 
efficiencies of several measures of associa- 
tion. One major problem of such work has been 
to characterize, realistically and parsimo- 
niously, the case of association or of non- 
independence. It has been handled by Konijn 
[14] and Farlie [7] in somewhat different ways. 

For contingency tables, the distributions 
suggested by Plackett [17] and referred to by 
Mosteller [19] would seem a natural basis for 
investigating power, but they were not used 
here. I am not aware that they have been used 
to exhibit relative efficiencies. 

Actually, it seems to be that two approaches 
are being followed in the selection of a measure 
of association. One, employed by Kruskal [15], 
emphasizes that the measure computed on sample 
frequencies estimates a counterpart population 
quantity and the user should be sure he wants 
to know that population quantity. Interpreta- 
tions are provided of these population quanti- 
ties in contexts such as predicting the order- 
ing of a pair of persons on a second IQ test 
from their ordering on a first IQ test. The 
underlying method involves discovering what 
actions the user wants to take when he sees 
his data, and then verifying that the suggested 
statistic will fit into that action pattern. 
Although the admonition to take into account 
the user's interests is undeniably good, the 
method still has its ambiguities. The amount 
of controversy generated, by the choice of a 
measure of association, among sociological 
methodologists is, I believe, testimony to 
these ambiguities [6, 16], although this issue 
is properly a problem in the sociology of 
knowledge. 

Another approach is by way of measurement model 
theory. The investigator states what he judges 
to be the measurement scale of his variates, 
and then if, for example, both the row and 
column variates are of ordinal types, but not 
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interval, he calculates the Goodman- Kruskal 

gamma or the Kendall tau- sub -b. At any rate, a 

Pearson product moment coefficient would be 

meaningless (a technical term [21, p. 66]) 

unless his scales were interval. The defini- 

tions of such distinctions among variables are 

most elegantly expressed as equivalence classes 

under certain transformations [21, p. 10]. 

Thus,.the scale is of ordinal type if it is 

equivalent in distinguishing among observational 

units, to any other scale obtained by a mono- 

tonic transformation of it. By substituting 

affine transformation in place of monotonic 

transformation in the above, one defines an 

interval scale type. 

The present work advocates the philosophy of this 

second approach, but suggests using empirical 

evidence in the data themselves for characterizing 

the measurement model type. The absence of these 

empirical criteria for determining scale type has 

always struck me as a shortcoming of the approach, 

and the works of Suppes and Zinnes [21, pp. 72 -74] 

and Campbell [5, Chapters XVII and in their 

final discussions of random measurement errors, 

serve as -the stepping- off -place for the present 

development. The data are here viewed as sampled 

from a population table in which the cell proba- 

bilities are formed in part by a parent, generic 

stochastic process and in another part by random 

drift among cells arising from measurement error 

(also called misclassification error by Mote and 

Anderson [18] in this categorical variable con- 

text). The criterion to be employed for judging 

the measures is relative efficiency and these 

efficiencies are to be calculated for variations 

in the population table. 

2. Defining the Parent Process, the Error 

Process and the Sampling Process 

The starting point for the comparison of measures 

of association is a two -way contingency table, an 

A by B table, whose row and column variates are 

categorical, but ordered. The statuses of the 

two qualitative variables are taken to be causally 

symmetric, that is, jointly dependent, either on 

one another or on some collection of unmeasured 

independent variables. The underlying process of 

interdependence will be supposed to have produced 

a joint distribution of the units of observation 
A B 

with cell probabilities 
i 

with = 1. 

i =1 j =1 

The probability reflects the chance that an 

observational unit will emerge with the ith 

category of the row variate and the category 

of the column variate. The will be taken to 

reflect the parent stochastic process. 



Now further suppose that the measurement opera- 
tion is to some extent fallible or that, after 
emergence, the unit's characteristics drift in 
a random fashion. This process will be called 
the error process. In particular, the chance 
of recording row category a when the unit is 
actually in category i will be denoted by 

eia 
Similarly 

jb 
is taken to be the chance that a 

unit that emerged in column category is 

recorded as being in category b. Combining the 
two processes by supposing the errors to be 
independent gives the resulting probability of 
observing a unit in cell (a,b) as: 

(2.1) 
pab = eial'jbrtij 

i 

If the error processes are not independent 
equation (2.1) becomes: 

(2.2) 
Sij,ab 

which may look simpler but involves many more 
misclassification parameters in the SiJ 

ab's 
than in the Aia's and 's. Such a model was 

used by Assakul and Proctor [2] to show how 
great a loss of power the chi -square test 
suffers under measurement error. It is also 
presented by Hayashi [12] who corrects biases 
in cross tabulations by estimating the mis- 
classification parameters. 

Both notions, the one of errors and the other 
of the joint parent distribution, need more 
empirical content if they are to be usable by 
the data handler. Measurement errors can be 
examined by duplicating measurements either by 
using a superior or optimal measurement method 
or by two parallel applications of the usual 
technique. From the sets of duplicate deter- 
minations one can estimate the pia and the 

Discussion of this estimation problem, 

important as it is, would lead us too far 
afield. Thus we will merely suggest the 
model equations for measurement and drift errors 
that will be used to define intervalness and 
leave as a separate task, the estimation of the 
parameters in such a model. 

It is taken that the misclassification probabil- 
ities follow the pattern of: 

= (A-1)ale /(lae 

(2.3) 

= - (A -1) when i = a . 

, if i A a 
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This may look complex but it merely states that 

eia 
depends firstly on an overall level of error, 

measured by a1 If is large this error occurs 

largely in adjacent categories, while if is 

small then distant categories may be confused. 
Thus, if is zero, there is no measurement nor 

drift error, while if zero the pattern is 

of "ordinal" type, and the larger becomes the 

more the pattern can be called "interval ". 

To complete the picture the jb's may be simi- 

larly defined by: 

E ), if j b 

j=b 

(2.4) 

= 1 - (B -1) an when j = b . 

However, in all of the following calculations we 
have taken a, = and 

= 
(32 

Having introduced the generic or parent process 
represented by and the drift or measurement 

error process by the eia's and 1jb's, it remains 

to specify the sample selection process. If 
one supposes that each of the n observational 
units had the same chance, namely of being 

in the (i,j) cell, and was subject to the same 
error process and that these processes acted 
independently from one unit to the next, then 
the cell frequencies, the nab, would be distri- 

buted in accord with a multinomial distribution 
with AB classes having underlying probabilities 
{pab). And this is what we will assume. Of 

the three sampling distributions cases distin- 
guished by Barnard [4] as (a) both margins 
fixed, (b) one fixed, and (c) both free, ours 
is the third. 

3. Measures of Association to be Compared 

The four principal measures of association to 
be examined are the Goodman -Kruskal G, Kendall's 
TB, the Kendall -Stuart TC, and a coefficient R 
that is a Pearson product- moment correlation 
coefficient using integer row and column scores. 
The first three appear to be widely used in the 
social sciences, while the fourth is congenial 
to the author's naive numerical point of view 
and follows Williams1[22] and Yates' [23] 
approaches. The definitional formulas are 
(see [11, p. 325; 10, p. 751; and 13, p. 563]): 

(3.1) G = (Ps - Pd)/(Ps Pd) 



(3.2) TC = (Ps - Pd)(A/(A - 1)] 

(3.3) TB = (Ps - Pd)/((1 - 

A B 

(3.4) R = E E (a - a)(b - RabIsasb 
a=1 b=1 

where the quantities involved in these formulas 
are defined as: 

with 

and 

where 

Ps 2 E E Rab{ E E Ra,b,) 
a b a,>ab>b 

Pd = 2 E E Rab{ Ra,b,) 
a b 

B A 
Ra.= E Rab and E Rab 

b =1 a =1 

A 

E (a - 
a)2Ra. 

a=1 

B 

b=1 

= E a Ra and E b Rb 
a b 

4. Basis of Comparison, Relative Efficiency 

The choice of criteria for comparing one measure 
with the other is not so much a mathematical 
question nor an empirical one, it is more like a 
moral one. In accord with cannons of argument 
from tradition in this ethical field, I will 
adduce that the criterion, namely efficiency, 
that I will use is widely accepted in the statis- 
tical profession. In comparing two procedures 
one frequently computes the ratio of the two 
sample sizes required to attain the same variance 
in estimating some parameter or required to 
achieve the same power in testing some hypothe- 
sis. This ratio is called relative efficiency 
and since larger samples are generally more 
costly, it shows which procedure will, in that 

sense, make best use of the observations. In 
the present case it is somewhat difficult to 
decide whether the problem is one of estima- 
ting a parameter or of testing an hypothesis. 

As defined, the four measures are statistics; 
they are functions of the sample relative 
frequencies, the Rab's. In each case there is 

the same function of the population relative 
frequencies, the that constitutes a popu- 

lation parameter. However, there are four dif- 
ferent parameters, and it would seem necessary 
first to decide which parameter was needed (as 
Kruskal (16] does) and then use the correspond- 
ing statistic. 
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The alternative point of view we have adopted is 
that the null hypothesis, H0 is, in all cases, 

that of the independence of row and column cate- 
gories, while the investigator is interested in 
detecting departures from H. From his knowl- 

edge, experience and perhaps a glance at the 
data, he suggests a structure on the and 

supposes some pattern of eia and We thus 

arrive at a set of rab' the alternative hypo- 

thesized population values. The sample is 
assumed drawn from this population and the 
measure is computed. It is proposed to compare 
any two such measures by the ratio of sample 
sizes that would be required to attain the same 
power at the alternative hypothesized values. 

The reasoning goes that each statistic, being a 
function of cell relative frequencies, is asymp- 
totically, as sample size increases,, normally 
distributed (about zero if H0 holds) and one 

would divide the statistic by its standard devia- 
tion to obtain a critical ratio. He would then 
refer this Z- value, say, to a table of areas 
under the normal curve to furnish a significance 
probability for rejecting H0. If the test is 

made at a 5% level of significance then a dis- 
tance of Z = 1.960 (where ((1.960) = .975 and 

is the normal distribution function) away from 
zero would lead to rejecting Ho. In order to 

assure this rejection with fairly high proba- 
bility of, say, .80 would require the population 
mean Z -value to be 1.960 plus .842 (since 
f(.842) = .80), or 2.802 away from zero. The 
population mean Z -value is the parameter value 
under the alternative hypothesis divided by the 
standard deviation. In all cases, the standard 
deviations of the statistics, based as they (the 
statistics) are upon sample proportions, are, to 

a first approximation, proportional to 
-1/2 

Thus the required sample sizes become (note that 

2.8022 7.85): 

(4.1) nG = 7.85 VG /y 2, 
nTC 

= 7.85 

7.85 VTB/Tb, 7.85 

where the variances are given as V(G) = 

V(TC) = /n, etc. and 2, and p2 are 

given by (4.1) to (4.4) with 
rab 

in place of 

Rab. When comparing these sample sizes, one 

sees that ratios such as 2 /VG, T2 etc are 

the crucial quantities. These ratios will be 
denoted as the "precisions" of the statistics 
with notation: 

(4.2) PG = = 

TB- 
and and PR = p2 /VR 



Thé argument here is closely akin to that of 

Bahadur [3] in which his quantity c, or "slope ", 

is equal to y 2 /VG or and so forth. 

5. Variance Expressions and Derivations' 

In the case of G, Goodman and Kruskal [11] give 

(5.1) VG = nV(G) 

= 

where 

nss 
a b b 

ndd 
a 
b E 

and 

E E p sd ab 

X [ E E p E 
a'>a a b 

a b 

and where and nd are the counterparts of Ps 

and Pd in formulas (4.5) and (4.6) when pab is 

used in place of Rab. Formula (5.1) can be 

derived by a straight forward, if tedious, appli- 

cation of a method described by R. A. Fisher [8, 

p. 309 -310] for the variance of any statistic, T 
say, when T is a function of frequencies that 
obey a multinomial distribution. Fisher's for- 

mula is: 

(52) )2) 
a b ab 

The last term is zero for three of the four sta- 
tistic since n enters explicitly only into TB. 
For the other three, the formula can be written 
in terms of relative frequencies as: 

(5.3) nV(T) = E E 

The results are: 

(5.4J (A 2nsd+ ndd 

After quite messy algebra it turns out that: 

(5.5) VTB {(nss- 
2nsd+ ndd) 

(s) Pa. 
X b a 

nd)2E E Pab(Pb 
a a 

(ns- nd) 1 1 2 

b a 
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where Aa = 1 - a.2 and = 1 - while 

the result for R is: 

(5.6) VR + p2/2)E E(a-a)2(b-6)Pab 
a b 

ab 

- E(a-a)3(b-b)pab/ aa 

+ + 
b a 

X 

A comment may be in order on the status, as 

approximations, of the quantities 
VG, VTB 

and VR The random variables G, TC, TB and R 

have distributions induced, as mentioned before, 
by the multinomial distribution of the Rab 
Their variances are complicated functions of the 

Pala; 
in fact, except for TC, the expressions are 

infinite series, the terms of which can be col - 

lected in increasing powers of n . The expres- 
sions for VG, VTB, and VR are the coeffi- 

cients of n -1 in these series. As n increases 
the other terms become smaller at a rate faster 
than this first term. Basing our comparison on 
this first term implies that our results hold 
only for large sample sizes.2 

6. Relative Efficiency of the Chi -Square 
Contingency Table Test 

In order to complete the picture, the chi -square 
test statistic for contingency tables has been 
included in the comparisons of efficiencies. The 
statistic is: 

(6.1) X2 = n E E (Rab Ra.R.b)2/Ra.R.b 
a b 

The,.so called, non -centrality parameter is: 

(6.2) X = E E(Pab pa.P.b)2 /Pa.Pb. 

By an argument similar to.that which led to for- 
mulas (4.1) only based on the non -central chi - 
square distribution, the formula for required 
sample size is: 

(6.3) n2 = X(DF, .05, .80) /X 

Here X(DF, .05, .80) is an entry from tables by 
E. Fix [9], which is the value of the non- 
centrality parameter for the non -null distribu- 

tion of X2 such that a, test at = .05 based on 

X2 will reject H0 with probability .80. In 

particular, X(25, .05, .80) = 22.843 is the 
value we will use when discussing some 6 by 6 
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Figure 1. Relative Efficiencies (E) of Four 
Measures of Association (G, R, TB, 

TC) and tpe Chi -Square Test Sta- 
tistic (X ) with Level of Measure- 
ment Error .15 and Varying 
Intervalness when Population 
Association is Bivariate Normal 
on a Six -by -Six Table. 

o.S 

Figure 2. Same as Figure 1 except that 
Population Association is a 
Diagonal of One -Sixth Proba- 
bilities. 
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Figure 3. Same as Figure 2 except that 

= .10. 
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Figure 4. Same as Figure 2 except that 

a = .05. 
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tables below. As a precision for the chi -square 
test to be put into (5.5) we will use: 

(6.4) X2 = 7.85 V/X(DF, .o5, .8o) . 

7. Numerical Results on Efficiencies 

In presenting results on relative efficiencies 
the coefficient G has been taken as a base of 
comparison and its efficiency set at 1.000. The 
relative efficiencies of the other statistics 
become ETC 

= PC /PG' ETB = G' 
ER = PR/PG and 

E = P For the values of the proba- 
X X 
bilities under the joint normal distribution 
were used in the first results, and A and B were 
both taken as six. The were probabilities 

in a joint distribution with correlation coef- 
ficient equal to .80 and the marginal robabil- 
ities were all set equal to one -sixth. The 

matrix of the thus appears as: 

.106 .031 .011 .010 .004 .004 

.031 .074 .034 .018 .005 .004 

.011 .034 .063 .031 .018 .010 

.018 .031 .063 .034 .011 

.005 .018 .074 .031 

.004 .010 .011 .031 .106 . 

If there is no error, that is pab nij, then 

the following are the efficiencies: 

EG = 1.000, = .825, ETB = .819 

ER = 1.006, E 
2 

= .271 
X 

One concludes for this case of exact measurement 
of an interval -type association that R, G, TB 
and TC have nearly the same sensitivity to such 
an alternative hypothesis, while chi -square is 

much less sensitive. 

As measurement or drift error is introduced by 
way of the parameter a, we find, in general, 
that R, TB and TC drop in efficiency relative 
to G when we maintain the underlying joint nor- 
mal distribution as a source of values. 

Figure 1 shows this for a = .15. Notice how 
similar are TC and TB, as might be expected. 
Also notice how R recovers its efficiency as 
intervalness of the error pattern increases, 
i.e., as increases. 

When the error -free distribution is taken to be 
a diagonal of one -sixth probabilities then the 
results shown in Figure 2 appear. In this case 
the coefficient R becomes the most efficient as 

intervalness increases. TB is a bit more effi- 
cient than TC but both are somewhat below G. 
The pattern of results in Figure 3 can be accen- 
tuated by reducing the level of error from 

= 15 to a = 10 and = .05. These results 
are shown in Figures 4 and 5. 
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8. Conclusions 

A major conclusion is that, while variations in 
the error process and in the underlying pattern 
of association will lead the relative efficien- 
cies to change a bit, the four measures of 
association are all quite similar. This seems 
to suggest that in the absence of any clear -cut 
superior measure of association the data analyst 
should use whichever measure he favors. How- 
ever, he should direct some attention to the 
measurement error process. There should be re- 
testing and re- coding done so as to learn 
between which categories is there misclassifi- 
cation. Then this source of uncertainty can be 
adjusted for in estimating the pattern of asso- 
ciation among the true -category variates. Also, 
when working with qualitative data, one should 
consider formulating a realistic probability 
model for the cell frequencies and then estima- 
ting the parameters of that model rather than 
estimating some conventionally employed measure 
of association. 

If, however, a measure of association must be 
recommended then my judgement would be the 
following. In so far as it seems reasonable 
that a numerical variate will be defined some 
day and the present categories will become ranges 
of this variate, then use scores and compute R. 
If not, then use G when two variates are 
involved, particularily if it seems that the 
measurement errors follow a relatively "flat" 
pattern with a small P. Kendall and Stuart [13, 
p. 566] report results suggesting the superiority 
of G over TC and conclude that: "If this is 
shown to be true in general, this fact ... would 
make [G] likely to become the standard measure 
of association for the ordered case." Our cal- 
culations show it to be true fairly generally. 
If more than two categorical variates with 
measurement error pattern having small are 
being analyzed then one might use TB. This is 
because TB is a bona fide correlation coeffi- 
cient, albeit of pair data. Consequently, its 
correlation matrix will be positive semi - 
definite and so lends itself to multivariate 
calculations. 

FOOTNOTES 

1. Although G, TB, and R are ratios of random 
variables, TC is not; and it is possible to 
obtain an expression for the exact variance 
of TC as: 

(5.4a) V(TC) (AA1)2 

nd) 

+ 2 n(n-1) 4(ndd- 

3(11s- 

When n is of moderate size, one would multiply 
TC by (n -1) /n to obtain the quantity tc in 



(13, p. 563], and then the variance expres- 

sion (5.4a) would be multiplied by [(n- 1) /n]2. 

2. It may be of interest to note how the pro - 
portional importance of the extra part of 
formula (5.4) to the part in 1/n decreases. 
For a case with Tc = .247 in a 6 by 6 table 

the exact variance was found to be 
.42878/n -1 + .88073/n(n -1). This suggests 

that for moderate sample sizes our approxi- 
mation would not be too good, but for large 
sample sizes the difference is negligible. 
With n = 20, the increase of exact over 
approximate variance is 9.3% and for n = 100 
it drops to 2.0%. 

3. These calculations were made by Anne Dalhouse 
using the charts provided in the National 
Bureau of Standard's Handbook [1, pp. 936]. 
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